Tag Archives


Gender Identity for AI

Artificial neural networks have given AIs the functionality for complex problem solving and pattern recognition, and they have entered the workforce, particularly in areas of big data analysis and global finance. As we begin to interact with and study these new learning machines, interesting questions arise. Are they going to take on human behavioral and gender distinctions (gender identity), because they have been programmed with data sets that have unconscious bias? Will those who are giving the learning machines feedback to focus their problem solving allow behavioral constraints into the teaching? If we give the AIs a woman’s voice, and a woman’s name, will we interact with her as if she was a woman? And does that mean she will in turn internalize those social expectations and become more female?

Naturally we are interested in all things having to do with gender. It is the first sentence the world places upon us, when the midwife announces boy or girl. We love gender. We give our teddy bears genders, and can describe in detail why we think-no, why we know that our little darling is a boy or girl. We give our cars genders, names, and personalities. It’s just because we’re human, and we want to humanize the things we love, and that surround us. And part of humanizing inanimate objects is to give them a name, a gender, and shower them with affection.

Part of our fascination with gender has led to some poor science, the popularity of which has trickled down into our collective consciousness. The idea that male brains and female brains are different in a significant way is probably not true, though the debate rages. Structure follows function, and hormones affect the developing brain. But even with minor structural and functional differences in the brains that are most probably hormonally-based, there is very little difference in boys and girl’s brains. There is a much wider variance between individuals than can be measured than between generalized groups based just on gender. We are more complicated than can be described in pop-science about hardwired aggression and nurture vs nature.

What is different between genders is communication, how we use language, and there the gender differences are significant enough to be measured. If we think of communication as the way we input data into our brains, we grow our biological neural networks with the complex range of human communication to which we’re exposed. And there are differences between male and female communication.

So with the science showing that biological neural networks- aka human brains- are more complex than can be measured, but are influenced by hormones, language, biology, and the wide range of human culture, we are left to consider if artificial neural networks will also be influenced by language and human culture. (This is assuming that the artificial neural networks that are biology and hormonally mediated are still a few years in the future.) Continue reading